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a b s t r a c t

In this paper, the design problem for non-fragile dynamic vibration absorbers (DVAs) is

investigated. Due to the imprecision of the manufacturing process or the variation

during the operation, uncertainty in the parameters of the DVA is unavoidable. The

uncertainty may degrade the performance of the designed DVA or even deteriorate the

DVA, i.e., when the parameters of the DVA vary in an admissible range, an expected

vibration suppression level should be guaranteed. The uncertainty of the DVA is feasibly

assumed to be norm-bounded. Then, the design problem for the DVA is converted into a

static output feedback (SOF) control problem. Sufficient condition for the existence of

the non-fragile DVA with a prescribed H1 level is derived by using a bilinear matrix

inequality (BMI). An iterative linear matrix inequality (ILMI) method is employed to

solve the BMI condition. Finally, a design example is given to show the effectiveness of

the proposed approach.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrations are inevitable in practical mechanical systems. As vibrations affect the safety of structures and their service
life, the suppression of the vibrations of machines is very important during their operation. Therefore, how to suppress
vibrations is always a key issue in the machine design and applications.

The dynamic vibration absorber (DVA) which consists of mass and spring components is attached on a machine
(primary system). When the primary system is excited by external disturbances, the vibration of the machine can be
attenuated by the DVA. The DVA is a very simple yet effective device to suppress the vibration of the machine especially for
the vibration at frequencies close to the natural frequency of the system. It has been applied to various applications since
its invention by Frahm in 1909 [1,2].

As new applications emerge, more stringent requirements arise on the design of DVAs. Research on the DVA has
remained very active. In general, there are two main approaches to improve the performance of the DVA.
�
 The first approach is to introduce an extra feedback control system to form the active DVA or semi-active DVA. By using
linear quadratic Gaussian (LQG) control, the authors in [3] presented an active control scheme of saw blade vibrations.
As pointed out in [4], semi-active vibration absorbers have some advantages over conventional passive vibration
absorbers. Several different algorithms by making use of the information required on the impact load and system states
were proposed in [4].
ll rights reserved.
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�
 The other main approach is to configure new structures. In traditional passive DVAs, there are generally an inertia, a
spring, and a damper. Nowadays, in order to have a better performance, passive DVAs may have various new structures.
Advanced control theories have been applied to achieve optimal design for different structures. In [5], an additional
spring element was proposed to be connected with the damper in series; in order to minimize the disturbed output
signal subject to a unit white noise input, the resulting optimization problem of the three-element type absorber was
solved based on the H2 performance index. In [6], an added mass onto the structure was studied. The innovative multi-
DOF DVA was proposed in [7] by Zuo and Nayfeh. Based on this concept, further research on the performance analysis
and comparison studies were further discussed in [8].

In practice, uncertainties existing in the stiffness and the damping of the DVA are unavoidable. However, in the literature
as discussed above, this important and practical issue on uncertainties has not been considered, to the best of our
knowledge. The uncertainty is generally caused by the lack of precision in the manufacturing process or variations during
operation. As unavoidable uncertainty arises in the DVA, the performance of the DVA using the existing methods cannot be
guaranteed. A particularly bad situation occurs when the DVA does not suppress the vibration of the primary system, but
aggravates the vibration due to the uncertainty. Hence it is practically demanding to consider the uncertainty in the DVA
when designing the system. A DVA is called non-fragile if it still works well when the parameters of the stiffness and
damping vary. To propose such a non-fragile DVA concept is motivated by robust non-fragile control that has recently
attracted lots of attention, see [9–12], to name a few.

In this paper, we investigate the design problem of non-fragile passive DVAs. As mentioned in [7,8], the design problem
of passive DVAs can be converted into a static output feedback (SOF) controller design problem. We assume that the
excitation of the primary system is L2-norm bounded (the energy of the excitation is bounded), and the uncertainties in the
parameters of the DVA are norm-bounded. Our objective is to minimize the energy of the amplitude of the machine’s
vibration, which can be cast as an H1 optimization problem. By employing the Lyapunov theory, sufficient condition for
the existence of H1 non-fragile DVA design is expressed in terms of a bilinear matrix inequality (BMI). The BMI problem is
complicated and there lack efficient solvers for it. Though various methods have been proposed to deal with the BMI
problem, it is hard to guarantee the convergence. An improved iterative linear matrix inequality (ILMI) has been presented
recently in [13] in which the algorithm converges quickly. Inspired by the work in [13–15], by solving the H1 performance
criterion, the derived BMI assures the existence of the non-fragile DVA design.

2. Problem formulation and preliminaries

Consider a machine with a passive DVA as shown in Fig. 1. The mass of the machine is ms and the machine is placed on a
spring–damper system. ks and cs are the stiffness and damping of the spring–damper system, respectively. X0 is the
vibration from the ground and is assumed to be bounded, and Xs is the vibration of the primary system. In order to protect
the machine, the magnitude of Xs is expected to be as smaller as possible when the machine is excited by an external noise
(vibration from the ground). A DVA, consisting of a mass m1, a spring k1 and a damper c1 is attached on the primary system
to suppress the vibration of the machine. In general, the mass of the DVA should be much smaller than the mass of the
machine, for example 1–10 percent of the mass of the primary system. Moreover, X1 denotes the vibration of the DVA. The
stiffness k1 and the damping c1 of the DVA are parameters which should be appropriately chosen such that the vibration of
the machine is suppressed. Note that the variations in k1 and c1 are needed to be taken into account. We assume that the
Fig. 1. A primary system with a passive DVA.
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actual stiffness k¼ k1þDk and the virtual damping c¼ c1þDc. Here, Dk and Dc are unknown variables representing
variations in the spring and damper, respectively. Moreover, the variations are practically assumed to be norm-bounded
and they satisfy

½Dk Dc� ¼ LNðtÞE, (1)

where L is a constant and E is a 1�2 matrix, and N(t) is an unknown time-varying variable satisfying NTðtÞNðtÞr1.
Under the excitation of the base vibration X0, the equations of motion for the primary system with a DVA are

m1
€X 1þcð _X 1�

_X sÞþkðX1�XsÞ ¼ 0,

ms
€X sþcð _X s�

_X 1Þþcsð
_X s�

_X 0ÞþkðXs�X1ÞþksðXs�X0Þ ¼ 0:

(
(2)

Eq. (2) can be rewritten in the following compact matrix form:

M €XþC _XþKX¼ Be1
_X 0þBe2X0þBuuðtÞ, (3)

where

X¼
X1

Xs

" #
, M¼

m1 0

0 ms

" #
, C¼

0 0

0 cs

" #
,

K¼
0 0

0 ks

" #
, Be1 ¼

0

cs

" #
, Be2 ¼

0

ks

" #
, Bu ¼

�1

1

� �
,

u¼ cð _X 1�
_X sÞþkðX1�XsÞ:

Now, in order to convert the passive DVA design problem into an SOF design problem, we define a new state vector
xT ¼ ½XT

ð _X�M�1Be1Þ
T
� and obtain

_xðtÞ ¼AxðtÞþB1oðtÞþB2uðtÞ: (4)

Here,

A¼
0 1

�M�1K �M�1C

� �
, oðtÞ ¼ X0,

B1 ¼
M�1Be1

M�1Be2�M�1CM�1Be1

" #
, B2 ¼

0

M�1Bu

" #
:

The output vector of interest is

yðtÞ ¼
X1�Xs

_X 1�
_X s

" #
¼ C2xðtÞþD21oðtÞ, (5)

where

Cp ¼ ½1 �1�, C2 ¼
Cp 0

0 Cp

" #
, D21 ¼

0

CpM�1Be1

" #
:

The control signal u(t) can be expressed as

uðtÞ ¼ FyðtÞ: (6)

Here, F : ¼ ½k c� denotes the SOF gain.
The function of the DVA is to suppress the vibration of the primary system when it is subject to disturbance. In fact, the

controlled output is the vibration of the machine. Hence the controlled output is defined as

zðtÞ ¼ C1xðtÞ, (7)

where C1 ¼ ½0 1 0 0�.

Remark 1. In order to transform the design problem to an SOF control problem, it is regarded that the spring of the DVA
feedbacks the relative displacement and the damper of the DVA feedbacks the relative velocity. Then, the optimal design
problem can be converted to a control problem, and hence, the control forces will be determined by the spring and damper
parameters. Such a conversion procedure was first proposed in [16]. Due to its flexibility and effectiveness, it has been
further studied in [7,8].

Remark 2. In this paper, the main goal is to suppress the vibration of the primary system. Therefore, the controlled output
is chosen as Xs. For other applications, if concerning with the acceleration, the controlled output can be chosen as the
fourth state (acceleration).
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Remark 3. In fact, the machine is also subject to system uncertainties. Yet in this work, our attention is focused on
dealing with the uncertainties of the DVA, which has not been studied in this area. It is worthwhile noting that the
method proposed in this work can be readily extended to the design problem of DVAs considering the machine
uncertainties. It is also interesting to further consider the uncertainty on the mass of the DVA. In this case, we can
characterize the uncertainty by a two-vertex polytope such that the closed-loop system can be accordingly represented by
two sub-systems [21].

Remark 4. It is quite interesting to discuss how to choose values of the uncertainties in the DVA. Since the stiffness and the
damping of the DVA are to be designed, it is not easy to precisely consider the uncertainties during the problem
formulation procedure. However, we can have a rough prediction on the manufacturing error or the variation, such as
the uncertainty ratio the tolerable uncertainty=the value for the nominal DVA� 100percent¼7LE=F � 100percent is
710–30 percent. Moreover, we can derive a rough range of the parameters of the DVA by using the existing method
without considering any uncertainties in the DVA. Then we get an interval of the product of L and E. The idea of choosing
the values for L and E is to ensure that the product of L and E covers the predicted interval. After choosing the values
of L and E, we can design the DVA by our proposed method below. Once the DVA is designed, the actual uncertainty ratio
can be computed. If the computed actual uncertainty ratio is too small, enlarge the product of L and E and redesign the DVA
until the requirements are satisfied.

Throughout the paper, we use the following definition.

Definition 1. Given a scalar g40, a DVA is said to be non-fragile with an H1 performance g if the following condition
holds:

JzJ2ogJoJ2 (8)

for all the variations in (1) and all nonzero oðtÞ 2 L2½0,1Þ, where JoJ2 and JzJ2 represent the 2-norm of the disturbance
and the controlled output, respectively.

The objective of this paper is to develop a DVA as shown in Fig. 1 such that, for all admissible variations in (1), the
designed DVA is non-fragile with an H1 performance g.
3. Main results

The closed-loop system for the control problem is expressed as

_xðtÞ ¼ ðAþB2FC2ÞxðtÞþðB1þB2FD21ÞoðtÞ,
zðtÞ ¼ C1xðtÞ:

(
(9)

Note that the uncertainty appears in the feedback gain. In order to deal with the uncertainty, we introduce the following
lemma.

Lemma 1 (Xie and Soh [17] and Jiang and Han [18]). Let Y¼YT, L and E be real matrices with compatible dimensions, and

N(t) be time-varying and satisfy (1), then the following condition:

YþLNðtÞEþE
T
NTðtÞL

T
o0, (10)

holds if and only if there exists a positive scaler e40 such that

Y L eET

� �eI 0

� � �eI

2
64

3
75o0 (11)

is satisfied. Here, we use an asterisk (*) as an ellipsis for the terms that are introduced by symmetry.

In the following, we analyze the H1 criterion and develop an algorithm to design the optimal non-fragile DVA.
3.1. H1 performance analysis

The H1 criterion minimizes the L2 gain from external disturbance to the controlled output, i.e., the infinity norm of the
transfer function. It has been a powerful tool in optimal control and filtering [19–22]. The conditions for H1 control can be
expressed by LMIs, see the following lemma.
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Lemma 2 (Gahinet and Apkarian [19]). Suppose the parameters of the DVA are given. The system in (9) is asymptotically stable

with a given H1 performance g if there exists a positive definite P=PT such that the following matrix inequality holds:

symðPðAþB2FC2ÞÞ PðB1þB2FD21Þ CT
1

� �gI 0

� � �gI

2
64

3
75o0: (12)

Here, symðPðAþB2FC2ÞÞ :¼ PðAþB2FC2ÞþðAþB2FC2Þ
TP.

It is noted that the uncertainty has been incorporated in Lemma 2. In order to eliminate the time-varying variable, we
employ Lemma 1 and derive the following theorem.

Theorem 1. Suppose the parameters of the DVA are given. The system in (9) is asymptotically stable with a given H1
performance g, if there exist a positive definite P=PT and a positive e such that the following matrix inequality holds:

L11 PðB1þB2FD21Þ CT
1 PB2L eðEC2Þ

T

� �gI 0 0 eðED21Þ
T

� � �gI 0 0

� � � �eI 0

� � � � �eI

2
6666664

3
7777775
o0, (13)

where L11 ¼ PðAþB2FC2ÞþðAþB2FC2Þ
TP and F ¼ ½k1 c1�.

Proof. According to Lemma 1, the system in (9) is asymptotically stable with a given H1 performance g if the condition
(12) holds. Moreover the condition (12) can be written in the following form:

YþLNðtÞEþE
T
NTðtÞL

T
o0,

where

Y¼
L11 PðB1þB2FD21Þ CT

1

� �gI 0

� � �gI

2
64

3
75o0,

L
T
¼ ½ðPB2LÞT 0 0�,

E ¼ ½EC2 ED21 0�:

By using Lemma 1, we obtain the matrix inequality (13). The proof is completed. &
3.2. DVA design

It is necessary to mention that, in Theorem 1, Condition (13) is not an LMI but a BMI. Thus far, there lack efficient solvers
for BMI problems due to its highly complexity. As the analysis part, the parameters of the DVA are supposed to be given in
Theorem 1. Now we turn to the synthesis problem by proposing a design method for determining the DVA parameters.

Here, the main challenge is to decouple the bilinear terms. One approach is that the parameter F can be easily obtained
if we can find the Lyapunov weighting matrix P. Let W1 denote the product of PB2F. Then the matrix inequality (13) is
equivalent to

L11 PB1þW1D21 CT
1 PB2L eðEC2Þ

T

� �gI 0 0 eðED21Þ
T

� � �gI 0 0

� � � �eI 0

� � � � �eI

2
6666664

3
7777775
o0, (14)

where L11 ¼ PAþW1C2þATPþðW1C2Þ
T.
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It is noted that the variable F is eliminated in matrix inequality (14). To keep the variable F, we perform a congruence
transformation to (13) by J1 ¼ diagfP�1,I,I,Ig, and obtain

~L11 ðB1þB2FD21Þ P�1CT
1 B2L eP�1

ðEC2Þ
T

� �gI 0 0 eðED21Þ
T

� � �gI 0 0

� � � �eI 0

� � � � �eI

2
6666664

3
7777775
o0, (15)

where ~L11 ¼ ðAþB2FC2ÞP
�1
þP�1

ðAþB2FC2Þ
T.

By setting PQ=I and FC2Q ¼W2, Condition (15) is converted into

L̂11 ðB1þB2FD21Þ QCT
1 B2L eQ ðEC2Þ

T

� �gI 0 0 eðED21Þ
T

� � �gI 0 0

� � � �eI 0

� � � � �eI

2
6666664

3
7777775
o0, (16)

where L̂11 ¼ AQþB2W2þQAT
þðB2WÞT. Another constraint is that the parameters of the DVA cannot be negative. Hence,

constraints on Condition (16) are given as

fFgiZ0, 8i¼ 1,2: (17)

Here, for a row matrix F, fFgi represents the ith element. It was shown in [15,13] that the condition PQ=I is a rank
constraint, which can be relaxed by minimizing the trace of PQ subject to following LMI:

P I

� Q

" #
Z0: (18)

Now, we can employ an ILMI method [13,14] to solve the design problem. The main idea of the iterative method is to find
an initial value for the Lyapunov weighting matrix P by using the Cone-complement linearization (CCL) [15] algorithm and
iterate the value for P until Condition (13) is satisfied.

The CCL algorithm for the initial value P in this paper is addressed as

Algorithm 1. Step 1: Set i=1, P00=randn(4,4), P0=P00
T P00, Q00=randn(4,4), and Q0=Q00

T Q00. Choose a constant e and a
prescribed H1 performance index g.

Step 2: Solve the following LMI problems: Minimize trace ðPiQ i�1þQ iPi�1Þ such that (14), (16), (17) and (18) hold.

Step 3: Check the trace of PiQi. If jtraceðPiQ iÞ�4jod for some sufficiently small scalar d40, i.e., 10�5, then we obtain the

initial value for P=Pi. EXIT.

Step 4: If i4TN where TN is the maximum number of allowed iterations, no feasible initial value for P. EXIT.

Step 5: Set i= i+1 and goto Step 2.

After obtaining an initial value for P in Algorithm 1, another ILMI algorithm for the non-fragile DVA design, as shown
below, will be employed.

Algorithm 2. Step 1: Set j=1 and P1=P where P is obtained from Algorithm 1.

Step 2: Solve the following LMI optimization problem for F with the given Pj:

Minimize aj subject to the LMI constraints (17) and

�L11 PjðB1þB2FD21Þ CT
1 PjB2L eðEC2Þ

T

� �gI 0 0 eðED21Þ
T

� � �gI 0 0

� � � �eI 0

� � � � �eI

2
6666664

3
7777775
o0, (19)

where �L11 ¼ PjðAþB2FC2ÞþðAþB2FC2Þ
TPj�ajPj.

Step 3: If ajo0, the parameter F for the robust non-fragile DVA is obtained. EXIT.

Step 4: Set j= j+1. Solve the following LMI optimization problem for Pj with the F obtained at Step 2:

Minimize aj subject to the LMI constraints (17) and (19).

Step 5: If ajo0, the parameter F for the robust non-fragile DVA is obtained. EXIT.

Step 6: Solve the following LMI optimization problem for Pj with the F and aj obtained at Step 4:

Minimize trace(Pj) subject to the LMI constraints (17) and (19).
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Step 7: If j4TN where TN is the maximum number of allowed iterations, it concludes that, by this algorithm, the

parameters of the robust non-fragile DVA not solvable with the prescribed H1 index g are not solvable. EXIT.

Step 8: Set j= j+1, Pj=Pj�1 and goto Step 2.

Remark 5. Though the results in [13] shed the light on our development in this work, it focused on the SOF control
problem for a numerical example system without uncertainty. In this paper, we extend their results by incorporating the
uncertainty in the designed controller. In addition, we have considered the practical non-fragile DVA design, which moves
a step further towards the practical application of robust control theory. The parameters of the DVA are practically required
to be non-negative, which is one additional constraint for the design problem in this work.

Remark 6. We introduce the robust non-fragile DVA in the passive suppression design problem. As we mentioned, the
uncertainty in the designed DVA is inevitable [23] so that the performance of the designed DVA cannot be guaranteed if it
is not considered. Therefore, to consider the uncertainty when designing the DVA is of not only the theoretical merits
but also of practical application perspective. The presented design procedures and method can be extended to multiple
degree-of-freedom DVA design problems readily.

Remark 7. BMI problems are difficult to solve due to the NP hardness [15,16,20,24]. Hence, they have attracted
considerable attention during the past decades. Although there is not any algorithm which is effective for all the problems,
there are lots of methods which are suitable for many cases, such as the homotopy approach in [16] and the gradient-based
algorithm in [8]. Among these approaches, the CCL algorithm is the most famous and has been shown the powerfulness for
many applications [24,25]. Recently, the authors in [13] proposed a new ILMI method which is essentially based on the CCL
algorithm. From our experience, the newly proposed method in [13] is fast as demonstrated from the example of [13].
Therefore, we adopt and modify the ILMI method for our design problem of robust non-fragile passive DVA.

4. Design example

In this section, an example will be given to compare and show the effectiveness of the proposed design method.
Suppose that the mass of the primary system ms=1.0 kg, the damping cs=0.1 N s/m, the stiffness of the spring ks=1.0 N/m,

and the mass of the DVA m1=0.1 kg. For the variations, it is assumed that L=0.025, and E=[1, 0.4]. By utilizing the proposed
design method, we obtain F ¼ ½0:0789 0:0491� when e¼ 0:02 and g¼ 5:0, i.e., k1=0.0789 N/m and c1=0.0491 N s/m. The
stiffness of the nominal DVA (with k1 and c1) is 0.0789 N/m and the damping of the nominal DVA is 0.0491 N s/m. Recall that
we devote to design non-fragile DVAs which can maintain the performance when subject to admissible manufacturing errors
and operation variations. In our example, the tolerable uncertainty in the stiffness is 70.025 N/m and in the damping is
70.01 N s/m. We obtain the admissible uncertainty ratio is 731.69 percent for the spring and 720.37 percent for the damper
when the required H1 performance index is no more than 5. Though there are two ILMI methods in the design procedure, there
are only three iterations (i=2 in Algorithm 1, j=1 in Algorithm 2 and a¼�6:1217� 10�7) in this example.

In the interest of comparing the suppressing effect and illustrating the correctness of the designed DVA, Fig. 2 shows the
frequency response of the system with different DVAs (different parameters for the spring and damper). Note that the peak
value of the frequency response is the L2 gain from the input to the output. The L2 gains for different DVAs are all less than
0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Fig. 2. Frequency response of the system with different DVAs and without DVA.
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the prescribed H1 attenuation level g. Moreover, compared with the response of the system without DVA, the designed
DVA shows significant advantage in suppressing machine vibrations.

5. Conclusions

In this paper, we have studied the design problem for non-fragile H1 DVAs. The design problem was first transformed
into an SOF controller design problem. Sufficient condition under which the closed-loop system is asymptotically with a
prescribed H1 attenuation level was derived. An ILMI method was employed to solve the derived condition. The given
example illustrates the validity and the effectiveness of the proposed design method. Moreover, the designed DVA shows
significant improvement in suppression of vibrations over the primary system without a DVA.
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